
Compositional Symbolic Execution Semantics

Erik Voogda,∗, Åsmund Aqissiaq Arild Kløvstada, Einar Broch Johnsena,
Andrzej Wąsowskib

aUniversity of Oslo, Oslo, Norway
bIT University of Copenhagen, Copenhagen, Denmark

Abstract

Symbolic execution is a program analysis technique to systematically explore all possible
paths through a program. The technique can be formally explained by means of small-step
transition systems that update symbolic states and compute a precondition corresponding
to the taken execution path. In stateful transition systems behavior may depend on pre-
vious transitions, which complicates compositional reasoning about programs. To enable
compositonal reasoning this paper defines a denotational semantics for symbolic execution.
The proposed semantics views a program as a set of traces, each of which has a corre-
sponding substitution — the composition of all its assignments — and a corresponding path
condition — the conjunction of all its Boolean tests under appropriate substitution. We
prove correspondence between the symbolic denotational semantics and a concrete seman-
tics. We argue that the symbolic denotational semantics is a very natural framework to
reason about symbolic execution, and use it to prove that symbolic execution computes
(weakest) preconditions. We provide mechanizations in Coq for the main results.

Keywords: Symbolic Execution, Program Analysis, Denotational Semantics

1. Introduction

Major successes in program analysis, particularly for debugging, test case generation, and
verification, have been achieved by symbolic execution [5, 15, 7, 6, 8, 9, 17, 21], a powerful
simulation technique in which symbolic states represent a wide range of concrete program
states. A complementary line of research investigates the meta-properties of symbolic exe-
cution [5, 35, 36]; in particular, modeling symbolic execution as a formal system and proving
it correct with respect to a concrete operational semantics.

With symbolic execution, program states associate program variables to symbolic ex-
pressions rather than to concrete values. Assignments in the program are understood as
updating the symbolic state through substitutions σ. Since symbolic states are abstract, no

∗Corresponding author
Email addresses: erikvoogd@live.nl (Erik Voogd), aaklovst@ifi.uio.no (Åsmund Aqissiaq Arild

Kløvstad), einarj@uio.no (Einar Broch Johnsen), wasowski@itu.dk (Andrzej Wąsowski)

Preprint submitted to Theoretical Computer Science April 24, 2025

choice can be made when encountering control-flow statements guarded by Boolean expres-
sions. Instead, the transition system modeling symbolic execution branches in both possible
directions (theoretically using nondeterminism; in practice exploring both branches), and
updates its own state by storing the decision, i.e., the Boolean guard or its negation, under
substitution. It thus generates the path condition φ, which is an aggregation of all decisions
made with respect to Boolean control-flow guards. If a program p is symbolically executed
and terminates in some symbolic state (σ, φ), then φ is a precondition for p to behave in a
way specified by the substitution σ.

Example. Consider the following code snippet, which halves an integer-valued variable if
its value is even, and multiplies it by three, adding one, if its value is odd :

cz def
= if (n % 2=0) then { n:=n ÷ 2; } else { n:=3*n+1; }

Three things are monitored in the state triples (p, σ, φ) of a symbolic execution engine:
(i) the remaining program p to analyze, (ii) a symbolic substitution σ that composes the
assignments it encounters, and (iii) the path condition φ that gathers the Boolean tests
encountered. Symbolic execution is usually initiated in the configuration (id,⊤): the identity
substitution id along with the path condition ⊤ (true) specifying the entire input space. The
symbolic executions of the program cz are the following two:

(cz, id,⊤)−→ (n:=n ÷ 2, id,⊤ ∧ n % 2 = 0) −→ (ε,{n/n ÷ 2}, ⊤ ∧ n % 2 = 0)
(cz, id,⊤)−→ (n:=3*n+1, id,⊤ ∧ ¬(n % 2=0))−→ (ε,{n/3 ∗ n+ 1},⊤ ∧ ¬(n % 2=0))

Here, ε is the terminated program, and {n/n ÷ 2} is the substitution that maps n to n ÷ 2
and every other variable to itself. The first step in both executions analyzes the if state-
ment and updates the path condition (under substitution, in this case identity) according to
the Boolean test and the branch it explores. The second step analyzes the assignment and
updates the symbolic substitution accordingly. We write −→∗ for the reflexive-transitive
closure of the relation −→. The two symbolic executions (cz, id,⊤) −→∗ (ε, σi, φi) (i = 1, 2)
above provide two final configurations (σi, φi) (i = 1, 2). The final configurations symboli-
cally represent paths through the program that behave exactly like the obtained substitution.
Moreover, the path conditions are preconditions for their corresponding substitution.

Substitutions. There are two ways to view symbolic substitutions. First, a substitution σ
is a syntactic operation that performs substitution of variables. Syntactic substitutions
transform postconditions into preconditions. As an example, consider the postcondition
ψ ≡ x > 0 and let σ substitute x by x+1. This σ represents the assignment x:=x+1. The
precondition of this assignment with respect to the postcondition ψ is obtained by applying
σ to ψ, so σ(x > 0) = x+ 1 > 0. Indeed, if x+ 1 > 0 and the program executes x:=x+ 1,
then, afterwards, x > 0.

Second, semantically, a substitution σ models a state transformation JσK (defined in
Definition 4) that evaluates the input state after substitution. With σ as above, a state s
with x valued as 20 would be transformed by σ to a state JσK(s) where x is valued as 21. If
symbolic execution of a deterministic program p yields a terminated symbolic configuration
(σ, φ), and p is run on a concrete input state s that satisfies φ, then the output is the
state JσK(s).

2

Verification. Given a postcondition ψ and a terminated symbolic configuration (σ, φ), the
formula φ ∧ σ(ψ) is a precondition of p with respect to ψ, because the path condition φ
ensures that program behavior corresponds to JσK, and the output JσK(s) satisfies ψ if and
only if the input s satisfies σ(ψ) (as formalized in Lemma 3), in this case, x+1 > 0. Syntactic
application of σ computes a precondition from a postcondition in a backward fashion, and,
simultaneously, σ describes a forward state transformation given by JσK.

Symbolic execution is therefore a compelling technique for verification purposes: it pro-
vides preconditions φ ∧ σ(ψ) specifying the inputs that ensure the program takes the path
corresponding to the symbolic execution of (σ, φ), and guarantees an output satisfying ψ.
Gathering more and more symbolic executions will yield a weaker and weaker precondi-
tion. In fact, the (possibly infinite) disjunction of the formulas φ ∧ σ(ψ), ranging over all
final configurations (σ, φ), gives precisely the weakest precondition—assuming the program
is deterministic. Following Hoare’s work on correctness reasoning [22], Dijkstra introduced
weakest preconditions for a backward predicate transformer semantics of the guarded com-
mand language [13]. In this work, we show how symbolic execution can be used to express
weakest preconditions. A formal proof of this is highly nontrivial, because it connects a
logical framework for preconditions to an infinite set of arbitrarily long executions in an op-
erational semantics. The denotational semantics of symbolic execution ameliorates exactly
such complications.

Composing symbolic executions. Historically, the benefit of denotational semantics has been
its compositionality. The degree of compositionality of a program semantics is determined
by how it is used to reason about programs in terms of their constituents. With operational
semantics, the focus is on execution of the program. How symbolic executions compose in
an operational semantics is not straightforward. For example, suppose we have analyzed
two programs p and q and obtained

(p, id,⊤) −→∗ (ε, σp, φp) and (q, id,⊤) −→∗ (ε, σq, φq)

It is not obvious from an operational point of view how these two executions compose to
form an execution of the sequenced program p # q. This is because the second execution does
not continue from the configuration where the first one ended, but starts from the initial
configuration (id,⊤). One expects to obtain an execution (p # q, id,⊤) −→∗ (ε, σ, φ) where σ
is some composition of σp and σq, and the path condition φ is some combination of φp and
σp(φq) (i.e., σp applied to all the variables occurring in φq), because we continued executing
q starting from σp instead of id. The denotational semantics turns this informal argument
into formal theory, and avoids overly complex proofs in the operational semantics.

Contributions. In this work we make the following technical contributions:

• We develop a denotational framework for symbolic execution.

• We show that symbolic substitutions, interpreted as concrete state transformers, co-
incide with the state-transforming trace semantics for inputs satisfying the trace path
condition (Thm. 1). Moreover, we show that this result lifts to programs (Thm. 2).

3

p

s

s1

s2

s3

•
•

(a) a nondeterministically branching program
producing a set of outputs

s

if s ⊨ φ1

if s ⊨ φ2

if s ⊨ φ3

Jσ1K(s)

Jσ2K(s)

Jσ3K(s)

t1

t2

t3

(b) the same program behavior as a set of traces ti with their
respective substitution σi and precondition φi

φ1 ∧ σ1(ψ)

φ2 ∧ σ2(ψ)

φ3 ∧ σ3(ψ) ψ

ψ

ψ
t1

t2

t3

(c) trace behavior specified by postcondition ψ,
and trace substitutions and path conditions (σi, φi)

p∨
i φi ∧ σi(ψ) ψ•

•

(d) program folded back together, precondition guaranteeing
existence of an output satisfying ψ

Figure 1: Reasoning about preconditions in terms of the denotational semantics

• We prove correctness and completeness of operational semantics (i.e., symbolic execu-
tion) with respect to the denotational semantics (Thms. 3 and 4).

• We prove that symbolic execution techniques compute (weakest) preconditions (Thms. 5
and 6 and Cor. 2) using the framework of propositional dynamic logic.

• We have mechanized1 our results in the Coq theorem prover [10]; these have been
labeled with the symbol.

Expressing preconditions in dynamic logic illustrates the power of a symbolic denotational
framework. A conceptual overview of how the symbolic denotational semantics is used to
reason about preconditions is exhibited in Figure 1: we represent programs as traces (a
to b); substitution lemmas convert this to specifying weakest preconditions of traces with
respect to postconditions (b to c); and for the whole program, the disjunction of all trace
preconditions will guarantee existence of a trace leading to the postcondition (c to d).

Overview. Section 2 provides a preliminary setup. Section 3 introduces traces, the key
concept in symbolic execution. Theorem 1 shows that symbolic and concrete semantics of
traces corresponds. In Section 4, we use propositional dynamic logic to express weakest
(liberal) preconditions of traces. In Section 5, we discuss syntax and semantics of programs
and represent them as sets of traces. In Section 6, we introduce the symbolic denotational
semantics of programs, culminating in the correspondence result Theorem 2. In Section 7

1The mechanized theory is available at https://doi.org/0281/zenodo.14698419

4

https://doi.org/10.5281/zenodo.14698419

we discuss symbolic operational semantics (i.e., symbolic execution), which we show to
be correct and complete (Theorems 3 and 4) in terms of the denotational semantics. In
Section 8, to demonstrate the power of the denotational framework, we state and prove
that symbolic execution computes preconditions (Theorems 5 and 6 and Cor. 2). Section 9
discusses related work and Section 10 provides some concluding remarks.

This work extends previously published work [41] on semantics of symbolic execution.
There, the symbolic semantics consisted of pairs of functions on states and sets of states.
In this work, we keep the semantics purely symbolic; the semantics consists of substitutions
and path conditions. This enables backward reasoning about preconditions, which is a
substantial extension in this work. The earlier version [41] considered procedures as an
extension, whereas here we consider probabilistic programming constructs and arrays.

2. Preliminaries

Here we briefly introduce notations used in the paper, including states and expression syntax
and semantics.

Concrete states. Program syntax builds on an arbitrary countable set X of variables denoted
x, y, Values for variables range over some domain D, which may include, e.g., integers,
rationals, Boolean values, lists, arrays, etc. Programs transform concrete states s : X → D
(or just states), which associate a value s(x) ∈ D to every x ∈ X during execution. We let
s[x 7→ v] denote the updated state that maps x ∈ X to v ∈ D and leaves every other y ̸= x
in X unchanged, i.e., y maps to s(y). Let SX = {s : X → D} denote the set of states.

Expressions. We use universal algebra [23] to model expressions. Let E be a signature, i.e.,
a set of operation symbols with ♯ : E → N providing arities. The set of E-terms over a set
X is the smallest set EX such that X ⊆ EX and such that, for every operator f ∈ E with
n = ♯(f), if e1, . . . , en ∈ EX , then also f(e1, . . . , en) ∈ EX .

• An E-algebra is a pair (X,α) of a set X and a family α of maps αf : X
♯(f) → X, f ∈ E

that provide an interpretation of the operators f in terms of elements of X.

• An E-algebra homomorphism between (X,α) and (X ′, α′) is a map g : X → X ′ that
preserves E-operations: g(αf(a1, . . . , a♯(f))) = α′

f(g(a1), . . . , g(a♯(f))) for all f ∈ E.

The set EX with the family ιX of maps ιX,f : E
♯(f)
X → EX , e1, . . . , e♯(f) 7→ f(e1, . . . , e♯(f))

interpreting tuples of E-terms over X as E-terms over X is an E-algebra. This is the free
algebra of E-terms for the set X. For any map g : X → X ′ and an E-algebra (X ′, α′), the
inductive extension of g over α′ is the E-algebra homomorphism g : EX → X ′ inductively
defined as g : a 7→ g(a) for a ∈ X and g : f(e1, . . . , e♯(f)) 7→ α′(g(e1), . . . , g(en)).

The syntax of expressions is provided by the set EX of E-terms when X is interpreted
as the set of program variables.

The semantics of expressions comes from some E-algebra (D, ε) that interprets each
operator f ∈ E as a map εf : D♯(f) → D. Let s : EX → D denote the inductive extension of
a state s : X → D over ε, evaluating expressions in the given state.

5

Predicates. The syntax of predicates is provided by a signature Π of predicate symbols with
arities ♯ : Π → N. Common examples of predicate symbols include =, <, and ∈, all binary.
For a predicate symbol r ∈ Π with ♯(r) = n, a predicate over X is of the form r(e1, . . . , en)
with each ei ∈ EX . Let PX denote the set of predicates over X.

The semantics of predicates comes from an interpretation I : Π →
⋃
n∈ND

n, assigning
to each n-ary predicate symbol the set of n-tuples in Dn for which the predicate is true.
Given the semantics ε of expressions, a state s : X → D satisfies a predicate r(e1, . . . , en) ∈
PX , written s ⊨ε,I r(e1, . . . , en), if (s(e1), . . . , s(en)) ∈ I(r). Here, s denotes the inductive
extension of s over ε. We assume ε and I fixed and write ⊨ in lieu of ⊨ε,I .

Boolean expressions. The syntax of Boolean expressions is generated as follows: every predi-
cate π ∈ PX over X is a Boolean expression over X; ⊥ (false) is always a Boolean expression;
and if φ and ψ are Boolean expressions over X, then so is φ → ψ. Write BX for the set
of Boolean expressions generated this way. We also include the following encodings: nega-
tion ¬φ as φ → ⊥; ⊤ (true) as ¬⊥; disjunction φ ∨ ψ as ¬φ → ψ; conjunction φ ∧ ψ as
¬(¬φ ∨ ¬ψ); and biconditional φ↔ ψ as (φ→ ψ) ∧ (ψ → φ).

Recall that SX = {s : X → D}. The semantics m(φ) ⊆ SX of a Boolean expression
φ ∈ BX for the set of states SX is inductively defined as

• m(r(e1, . . . , en)) = {s ∈ SX | s ⊨ r(e1, . . . , en)};

• m(⊥) = ∅;

• m(φ→ ψ) = (SX \m(φ)) ∪m(ψ).

Note that there is an implicit dependence on ε and I in the base cases r(e1, . . . , en) above.
We write s ⊨ φ if s ∈ m(φ). The derived semantic definitions of the encodings for negation,
true, disjunction, conjunction, and biconditional, follow conventional propositional logic.
Write φ ⇒ ψ if m(φ) ⊆ m(ψ) and φ ≡ ψ if m(φ) = m(ψ). We will say that a formula φ is
valid (in m), written ⊨ φ, if s ⊨ φ for all states s ∈ SX .

Example 1. Let D = Z and let E contain integer arithmetic operation symbols, including
symbols for integer division ‘÷’ and remainder after integer division ‘%’. Every integer is also
a constant symbol of E. Naturally, the map ε evaluates the integer symbols in E as integers
in Z, and the symbols ‘÷’ and ‘%’ (and others) as the familiar integer operations. Let Π
contain symbols for equality ‘=’ and inequalities (‘<’, ‘≤’, etc.). Let I model their natural
interpretations of equality and the respective inequalities. Now (3*n+1) % 2=0 with n ∈ X
is a Boolean expression. In a state s : X → D where s(n) = 5, we have s ⊨ 3*n+1 % 2=0,
since, using ε, we have s((3*n+1) % 2) = 0, and (0, 0) ∈ I(=).

Composition operators. We use many different symbols for composing different structures.
For later reference, here is an overview:

6

syntactic sequencing of traces and programs
◦ semantic sequencing of traces (function composition)
⊙ semantic sequencing of programs (Kleisli composition for the powerset monad)
⋆ symbolic sequencing of trace substitutions (substitution composition)
• state evaluation by symbolic substitution

3. Traces

Symbolic execution is a technique that represents finite and deterministic runs, or traces, of
a program by a substitution and path condition. Our starting point will therefore be traces;
the theory is extended to programs from Section 5 onwards. We argue that a trace defines
a state transformer, and that symbolic execution computes precisely this state transformer.
Furthermore, symbolic execution computes a Boolean formula which, as we show later, is a
precondition for the trace.

Traces are finite lists of assignments of (side-effect free) expressions to variables and
assertions of Boolean expressions, composed by sequencing. From here on out, X will be
the set of program variables.

Definition 1 (Trace Syntax). The set of traces TX is defined by the grammar:

TX ∋ t ::= ε | x:= e | φ? | t # t

where x ∈ X, e ∈ EX is an expression and φ ∈ BX a Boolean expression.

The trace ε denotes the empty trace. Before we can equip the traces with state transformer
semantics, we need to deal with failed assertions. Let SX = SX ∪ {⊘} be the extended set
of states that includes the aborted state ⊘ (recall that SX = {s : X → D}). Each trace then
defines a transformer of states as follows.

Definition 2 (Trace Semantics). Let t ∈ TX range over traces. The trace semantics t : SX →
SX is defined inductively on the structure of traces by

t : s 7→



s if t = ε

s[x 7→ s(e)] if t = x:= e
s if t = φ? and s ⊨ φ
⊘ if t = φ? and s ̸⊨ φ
(t2 ◦ t1)(s) if t = t1 # t2

for s ∈ SX and t : ⊘ 7→ ⊘ for t = ε, t = x:= e, t = φ?, and t = t1 # t2.

The empty trace acts as the identity and an unsatisfied assertion produces the aborted
state. With this semantics, sequencing is associative since function composition is. One
may therefore take it to be right-associative, without loss of expressiveness. Every nonempty
trace is thus of the form t#u— possibly by adding a trailing u = ε— where t is sequence-free,
i.e., t = ε, t = x:= e, or t = φ?.

7

Example 2. Intuitively, the cz code snippet from the introduction has exactly two traces—
this intuition is made formal in Definition 11 and Lemma 9. The traces of cz are given by
t1 = ¬(n % 2=0)? # n:= 3 ∗ n+ 1 and t2 = (n % 2=0)? # n:= n ÷ 2.

3.1. Symbolic Substitutions
In addition to the concrete semantics, we give a symbolic semantics to traces. The symbolic
semantics of a trace is given by a symbolic substitution that represent its concrete behavior.
A symbolic substitution captures an abstract notion of state transformation by mapping
variables to expressions.

Definition 3 (Symbolic Substitution). A symbolic substitution is a map σ : X → EX from
variables to expressions over variables.

We write ΣX = {σ : X → EX} for the set of symbolic substitutions. Let id ∈ ΣX denote the
“identity substitution” x 7→ x that maps each variable to itself, and {x/e} the substitution
that maps x 7→ e and y 7→ y for y ̸= x. Substitutions σ are lifted to expressions by inductive
extension:

σ : EX → EX f(e1, . . . , en) 7→ f(σ(e1), . . . , σ(em))

Constants (null-ary operators) are left unchanged by σ. The lifting allows us to compose
two substitutions σ1, σ2 : X → EX by defining σ1 ⋆ σ2 : x 7→ σ1(σ2(x)). This is well-defined
in the sense that (σ1 ⋆ σ2)(e) = σ1(σ2(e)) for all expressions e ∈ EX . The composition ⋆
is associative and has identity id. Using common update notation, note how σ ⋆ {x/e} =
σ[x 7→ σ(e)] (and not σ[x 7→ e]).

Given a substitution σ : X → EX in ΣX and a concrete state s : X → D in SX , evaluation
after substitution is the map s • σ : X → D given by x 7→ s(σ(x)). This is a new concrete
state that associates to every variable x the value obtained by evaluating in s the expression
associated to x by the substitution σ. As a state, s • σ evaluates an expression e ∈ EX like
any other: using the extension s • σ. This lifting commutes with application in the following
sense:

Lemma 1 (Substitution Lemma for Expressions). Let σ ∈ ΣX and s ∈ SX . Then (s • σ)(e) =
s(σ(e)) for all expressions e ∈ EX .

With the following definition, we interpret a substitution as a map on states:

Definition 4 (Symbolic Substitution Semantics). The semantics of a symbolic substitution
σ ∈ ΣX is the map JσK : SX → SX defined by s 7→ s • σ.

By Lemma 1, this composition is well-defined:

Lemma 2 (Composition of Symbolic Substitutions). For all σ, σ′ ∈ ΣX : Jσ ⋆ σ′K = Jσ′K◦JσK.

Proof. Let s : X → D in SX and x ∈ X be arbitrary. Using Lemma 1, we have

[s • (σ ⋆ σ′)](x) = s([σ ⋆ σ′](x)) = s(σ(σ′(x)))
Lem. 1
= s • σ(σ′(x)) = [(s • σ) • σ′](x)

showing that Jσ ⋆ σ′K(s) = Jσ′K(JσK(s)) for arbitrary s.
8

By defining the semantics of symbolic substitutions as state transformers, JidK is the identity
s 7→ s on SX , and J{x/e}K is the update map s 7→ s[x 7→ s(e)]. Composition of substitution
semantics is associative—simply because it is function composition.

Remark. Semantic composition Jσ′K ◦ JσK is the reverse of syntactic composition σ ⋆ σ′,
because syntactic composition is a lifted map and performs uniform substitution of vari-
ables in expressions. For example, substituting (x − 1) for x in the substitution x 7→ 2 · x
(syntactically, x 7→ x − 1 “after ” x 7→ 2 · x) yields a substitution that associates to x an
expression whose semantics first computes x− 1 and then multiplies by two.

Substitutions are applied to predicates as in σ(r(e1, . . . , en))
def
= r(σ(e1), . . . , σ(en)), and then

recursively on Boolean operators, e.g., σ(φ→ ψ)
def
= σ(φ) → σ(ψ).

Lemma 3 (Substitution Lemma for Boolean Expressions). Let σ ∈ ΣX and s ∈ SX . Then
JσK(s) ⊨ φ if and only if s ⊨ σ(φ), for all Boolean expressions φ ∈ BX .

An important corollary of Lemmas 1 and 3 is that if φ⇒ φ′ then σ(φ) ⇒ σ(φ′).

Example 3. The composition σ ⋆σ′ of σ, σ′ ∈ ΣX , where σ : n 7→ 3∗n+1 and σ′ : n 7→ n ÷ 2,
maps σ ⋆ σ′ : n 7→ (3 ∗ n+ 1) ÷ 2. For a state s ∈ SX with s : n 7→ 5, we have Jσ ⋆ σ′K(s)(n) =(
s • (σ ⋆ σ′)

)
(n) = s((3 ∗ n + 1)÷2) = 8. This is equivalent to letting s′ = JσK(s), for which

s′(n) = 3 ∗ 5 + 1 = 16 and then computing Jσ′K(s′)(n) = 16 ÷ 2 = 8.
Thus, Jσ′K(s′) ⊨ n%2 = 0. By Lemma 3, this is equivalent to s′ ⊨ σ′(n%2 = 0), i.e.,

s′ ⊨ (n ÷ 2)%2 = 0. Using s′ = JσK(s), this in turn is equivalent to s ⊨ σ(σ′(n%2 = 0)), so
s ⊨ ((3 ∗ n+ 1) ÷ 2)%2 = 0.

3.2. Symbolic Trace Semantics
Both traces and symbolic substitutions define state transformers. In this section, we define
the symbolic semantics of a trace, called the trace substitution, as the composition of all its
assignments interpreted as substitutions.

Definition 5 (Trace Substitution). Let t ∈ TX range over traces. The trace substitution
Sub(t) : X → EX is defined inductively over the structure of traces as follows:

Sub(t) =


id if t = ε

{x/e} if t = x:= e
id if t = φ?

Sub(t1) ⋆ Sub(t2) if t = t1 # t2

For the trace semantics in Definition 2, sequencing can be taken to be right-associative
without loss of expressivity, because its semantics is composition, which is associative. The
same argument holds here: composition of substitutions is associative as well. That is,

Sub((t # u) # v) = (Sub(t) ⋆ Sub(u)) ⋆ Sub(v) = Sub(t) ⋆ (Sub(u) ⋆ Sub(v)) = Sub(t # (u # v))

9

Thus, with this substitution semantics, we may again assume that every nonempty trace is
of the form t # u where t is sequence-free, and possibly by adding a trailing u = ε.

The semantics of Sub(t) coincides with the semantics of t itself (Definition 2), except for
aborted computations:

Lemma 4 (). For every trace t ∈ TX and input s ∈ SX , if t(s) ̸= ⊘ then t(s) = JSub(t)K(s).

Proof. Letting t = u # t′ with u sequence-free, we do a case analysis on u. The interesting
case is t = x:= e # t′. For arbitrary s : X → D and putting s′ = s[x 7→ s(e)],

t(s) = t′(s′)
IH
= JSub(t′)K(s′) = JSub(t′)K(J{x/e}K(s)) Lemma 2

= J{x/e} ⋆ Sub(t′)K(s) = JSub(t)K(s)

Here we have used the fact that s′ = s[x 7→ s(e)] = J{x/e}K(s).

Example 4. With t1 and t2 from Example 2 representing cz, write φ for n%2 = 0. Then,

Sub(t1 # t2) = Sub(¬φ?) ⋆ Sub(n:= 3 ∗ n+ 1) ⋆ Sub(φ?) ⋆ Sub(n:= n ÷ 2)
= id ⋆ {n/3 ∗ n+ 1} ⋆ id ⋆ {n/n ÷ 2}
= {n/3 ∗ n+ 1} ⋆ {n/n ÷ 2}
= {n/(3 ∗ n+ 1) ÷ 2}

3.3. Path Conditions
In the definition of Sub, all assertions are simply ignored, even though these provide crucial
information, namely, for which inputs the trace does not lead to an aborted state. To
characterize these inputs, the path condition collects all the assertions along a trace.

Definition 6 (Trace Path Condition). The path condition PC(t) ∈ BX of a trace t ∈ TX is
defined inductively over the structure of traces as follows:

PC(t) =


⊤ if t = ε

⊤ if t = x:= e
φ if t = φ?

PC(t1) ∧ Sub(t1)(PC(t2)) if t = t1 # t2

Since φ ∧ ⊤ ≡ φ and σ(⊤) ≡ ⊤, the conjuncts resulting from ε and x:= e may be omitted
in the resulting path conditions. The substitution of t is applied to the path condition
of u in the sequencing case. It follows straightforwardly from Definitions 5 and 6 that
PC((t # u) # v) = PC(t # (u # v)) for all t, u, v ∈ TX .

Example 5. Consider t1 and t2 from Example 2 and φ ≡ n%2 = 0 from Example 4. Then,

PC(t1 # t2) = PC(¬φ? # n:= 3 ∗ n+ 1) ∧ Sub(¬φ? # n:= 3 ∗ n+ 1)(PC(φ? # n:= n ÷ 2)
= PC(¬φ?) ∧ ⊤ ∧

(
Sub(¬φ?) ⋆ Sub(n:= 3 ∗ n+ 1)

)
(φ ∧ ⊤)

≡ ¬(n%2 = 0) ∧ {n/3 ∗ n+ 1}(n%2 = 0)
= ¬(n%2 = 0) ∧ (3 ∗ n+ 1)%2 = 0

10

The path condition of a trace specifies precisely which initial states will not be aborted.

Lemma 5 (). For every trace t ∈ TX and input s : X → D, t(s) ̸= ⊘ if and only if
s ⊨ PC(t).

Proof. Assuming t of the form u#t′ and letting u be free of sequencing, we do a case analysis:

• t = φ? # t′: by IH, t′(s) ̸= ⊘ if and only if s ⊨ PC(t′). Thus, t(s) ̸= ⊘ if and only if
s ⊨ φ and s ⊨ PC(t′). But this means exactly s ⊨ PC(t).

• t = x:= e # t′: write s′ = J{x/e}K(s) = s[x 7→ s(e)], so t(s) = t′(s′). By Definition 6,
s ⊨ PC(t) iff s ⊨ {x/e}(PC(t′)) iff (Lemma 1) J{x/e}K(s) ⊨ PC(t′) iff (IH) ⊘ ≠ t′(s′) =
t(s).

This case analysis proves the lemma.

Computing both the final substitution and path condition of a trace amounts to a symbolic
execution of that trace. This provides a symbolic denotational semantics for traces:

Definition 7 (Symbolic Trace Semantics). The symbolic semantics of a trace t ∈ TX is the
pair (Sub(t),PC(t)) ∈ ΣX ×BX .

The following result relating the symbolic trace semantics to the concrete trace semantics is
now a straightforward corollary of Lemmas 4 and 5:

Theorem 1 (Symbolic-Concrete Correspondence for Traces). For every trace t ∈ TX
and states s, s′ ∈ SX : t(s) = s′ if and only if s |= PC(t) and JSub(t)K(s) = s′.

4. Weakest Preconditions of Traces

Theorem 1 states that PC(t) is a precondition of t in the sense that it avoids failed assertions.
The if and only if tells us that this is the weakest such precondition. We now ask more
broadly: given a postcondition ψ, what is the weakest precondition that guarantees successful
execution of t in such a way that we terminate in a state satisfying ψ? This is what we
explore in this section using propositional dynamic logic (PDL) [18], a multi-modal logic in
which programs constitute modalities. For now, we restrict the modalities to traces.

Dynamic logic syntax. We extend our Boolean expressions to trace PDL by

B̂1 ∋ φ ::= r(e1, . . . , en) | ⊥ | φ→ φ | [t]φ

where r ranges over predicate operators in Π, each ei over expressions in EX , and t ranges
over traces in TX . We retain encodings of negation, truth, disjunction, conjunction, and
biconditional from Boolean expressions. The dual of the box modality is the diamond
modality encoded by ⟨t⟩φ def

= ¬[t]¬φ.

11

Dynamic logic semantics. The semantics m(φ) ⊆ SX as defined for predicates, false, condi-
tionals, and the propositional logic encodings is as before. The semantics of the box modality
is given by

m([t]φ)
def
= {s ∈ SX | t(s) ∈ m(φ) or t(s) = ⊘}

Box modalities [t]φ specify states on which t either aborts or produces an output satisfying φ.
This is known as the weakest liberal precondition of φ with respect to t.

Using the semantics of negation and box, diamond semantics is derived as

m(⟨t⟩φ) = SX \ {s ∈ SX | t(s) ∈ m(¬φ) or t(s) = ⊘} = {s ∈ SX | t(s) ∈ m(φ)}

Diamond modalities ⟨t⟩φ specify states on which t must produce an output satisfying φ
(and not abort). This is known as the weakest precondition of φ with respect to t.

Weakest preconditions of traces. By definition, box and diamond modalities are respectively
the weakest liberal precondition and weakest precondition of a trace with respect to a post-
condition. Symbolic execution computes precisely the necessary information in the form of
a path condition and final substitution. Since postconditions are usually given as (modality-
free) propositional formulas, and since Lemma 3 was proved in absence of modalities, we
consider postconditions to be Boolean formulas ψ ∈ BX .

Lemma 6 (Weakest Preconditions for Traces). For all traces t ∈ TX and Boolean ex-
pressions ψ ∈ BX :

• [t]ψ ≡ PC(t) → Sub(t)(ψ) and

• ⟨t⟩ψ ≡ PC(t) ∧ Sub(t)(ψ).

Proof. By straightforward induction on the structure of t and using Lemmas 4 and 5.

Example 6. For t1 defined as ¬(n%2 = 0)? # n:= 3 ∗ n+ 1 as in Example 2 and ψ ≡ n = 16,
we have the following weakest preconditions:

[t1]ψ ≡ (n%2 = 0) ∨ n = 5 ⟨t1⟩ψ ≡ n = 5

Dynamic logic theorems. Recall that a formula φ is valid if s ⊨ φ for all s ∈ SX .

Proposition 1 (). For all variables x ∈ X, expressions e ∈ EX , formulas φ, ψ ∈ BX , and
traces t, u ∈ TX , the following formulas are valid:

T1. [ε]φ↔ φ

T2. [x:= e]φ↔ {x/e}(φ)

T3. [ψ?]φ↔ (ψ → φ)

T4. [t # u]φ↔ [t] [u]φ

12

Proof. We prove validity of T3 and T4. Showing validity of φ↔ ψ, i.e., ⊨ φ↔ ψ, amounts
to showing m(φ↔ ψ) = SX , which is equivalent to m(φ) = m(ψ).

T3. If s ∈ m([ψ?]φ) then either ψ?(s) = s ∈ m(φ) or ψ?(s) = ⊘. By definition,
the former means s ∈ m(φ). The latter, by definition, happens iff s ̸∈ m(ψ). Either way,
s ∈ m(¬ψ) ∪m(φ), so s ∈ m(ψ → φ). The converse implication is proved symmetrically.

T4. If s ∈ m([t # u]φ) then either u(t(s)) ∈ m(φ) or u(t(s)) = ⊘. By definition, the
former means t(s) ∈ m([u]φ) and so s ∈ m([t] [u]φ); the latter means one of two cases:
if t(s) = ⊘ then s ∈ m([t]ψ) for any ψ and, in particular, s ∈ m([t] [u]φ). Otherwise, if
t(s) = s′ for some s′ ∈ SX then u(s′) = ⊘ and t(s) ∈ m([u]φ) so s ∈ m([t] [u]φ). Either
way, s ∈ m([t] [u]φ) and so m([t # u]φ) ⊆ m([t] [u]φ). The converse is proved similarly.

The statements T1-T4 are often used as axioms, which, together with some rules of deduc-
tion, may form a system of inference for PDL that breaks down the trace modalities and
leaves us with a propositional logic formula. The proposition above tells us that using T1-T4
as axioms for our deduction system would be sound, since they are semantically valid. To
have a complete system of deduction, the proof system also contains axioms for propositional
logic and the following two deduction rules:

R1. Modus ponens: if φ and φ→ ψ are theorems, then ψ is also a theorem;

R2. Generalization: if φ is a theorem then [t]φ is a theorem for all traces t ∈ TX .

The proofs of soundness and completeness are similar to those in a similar context by Harel
et al. [18].

5. Programs

We have introduced substitutions Sub(t) and path conditions PC(t) for traces in Section 3,
and showed that Sub(t)(ψ) ∧ PC(t) is the weakest precondition of a trace with respect to
a postcondition ψ in Section 4. We will now extend our formalization to programs that
include sequencing, choice, and Kleene-star iteration. The symbolic denotational semantics
of programs will be a so-called collective semantics [12]; it is given in terms of sets of traces.
We also discuss the While language: a deterministic subclass of programs.

5.1. Programs
The set of programs over program variables X is denoted QX and defined by extending the
trace syntax from Definition 1 with operators for choice ‘+’ and iteration ‘∗’.

Definition 8 (Program Syntax). The set of programs p ∈ QX over X is defined by the
grammar:

QX ∋ p ::= ε | x:= e | φ? | p # p | p+ p | p∗

where x ∈ X, e ∈ EX is an expression over X and φ ∈ BX a Boolean expression.

13

Iteration binds strongest and sequencing binds stronger than choice, i.e., p + q # r means
p+ (q # r). Note that traces are a subclass of programs, i.e., TX ⊆ QX .

Programs generate multiple outputs at the same time due to the nondeterministic con-
structs, and so the semantics of programs will be to produce sets of concrete states. Thus
the natural choice of semantics for p is a function p : SX → PSX . Since SX ̸= PSX , we
cannot directly compose the functions. Instead, we employ Kleisli composition [28]. For
functions f : X → PY and g : Y → PZ, the Kleisli composition is defined as

g ⊙ f : X → PZ x 7→ {z ∈ g(y) | y ∈ f(x)}

Kleisli composition is associative, and identity is given by singleton inclusion x 7→ {x}.
Note that defining composition in this way amounts to working in the Kleisli category for
the powerset monad [28]. We are now ready to give semantics to programs.

Definition 9 (Program Semantics). The semantics of programs p ∈ QX is inductively
defined as

p : SX → PSX , s 7→


{t(s)} \ {⊘} if p = t ∈ TX

q(s) ∪ r(s) if p = q + r⋃∞
m=0 q

m(s) if p = q∗

r ⊙ q if p = q # r

By removing the aborted state ⊘ in the first case, aborted runs are discarded. In the case
of iteration, qm stands for m-fold Kleisli composition of q; for m = 0, qm is the identity
s 7→ {s}. Given q and s, the definition of iteration is equivalent to the least fixed point of
the operator λW . {s} ∪ {s′′ ∈ q(s′) | s′ ∈ W}, where W ⊆ SX and the partial order is that
of subset inclusion. If programs happen to be traces, trace and program semantics coincide
in the case of sequencing, i.e., (p # q)(s) = {(t # u)(s)} if p # q = t # u.

A program p ∈ QX is called deterministic if, for all inputs s ∈ SX , there is at most one
state in the set p(s). A deterministic program p diverges on state s if there are no outputs
in p(s). If p is deterministic and does not diverge on input s, then there is a unique state
s′ ∈ p(s); we write p(s) = s′ in this case and say that p terminates on input s.

Programs obey several expected laws. Iteration can be unfolded to a choice of the empty
program and sequencing, and sequencing distributes over choice.

Lemma 7 (). For all programs p, q, r ∈ QX : p∗ = ε+ p # p∗ and (p+ q) # r = p # r + q # r.

Proof. We prove iteration unfolding. The sets p∗(s) = (ε + p # p∗)(s) are equal for all s.
Indeed, if s′ ∈ p∗(s) then there is m ≥ 0 such that s′ ∈ pm(s). Either (i) m = 0 and s′ = s
or (ii) m > 0 and s′ ∈ (pm−1⊙p)(s). Case (i) means s′ ∈ ε(s) and in case (ii) s′ ∈ (p #p∗)(s).
Hence, s′ ∈ (ε+ p # p∗)(s). Reverse all implications to prove the converse inclusion.

5.2. The While Language
Conventional if and while statements can be encoded in the language as follows:

if φ p q
def
= (φ? # p) + (¬φ? # q) while φ p

def
= (φ? # p)∗ # ¬φ?

14

By Lemma 7, associativity and unit ε of sequencing, and commutativity of choice,

while φ p = (ε+ (φ? # p) # (φ? # p)∗) # ¬φ?
= ¬φ? + φ? # p # (φ? # p)∗ # ¬φ?
= if φ (p # while φ p) ε

While programs are a subclass of programs that are built exclusively from inactions, assign-
ments, sequencing, and if and while statements—any assumption, nondeterministic choice,
or iteration happens only due to an if or while statement.

Definition 10 (While Syntax). The set of While programs over X is defined by:

WX ∋ p ::= ε | x:= e | p # p | if φ p p | while φ p

where x ∈ X, e ∈ EX is an expression over X and φ ∈ BX a Boolean expression.

Since WX ⊆ QX , the semantics of While programs is already defined.

Lemma 8 (). Every While program p ∈ WX is deterministic.

Proof. By induction on the structure of While programs. We look at two cases.

• Let p = if φ q r, where q, r ∈ WX , so deterministic (IH). For arbitrary s ∈ SX , without
loss of generality, s ⊨ φ, so (¬φ? # r)(s) diverges, and (φ? # q)(s) is deterministic, since
φ?(s) = {s} and q is deterministic. Hence, p(s) contains at most one output.

• Let p = while φ q with q ∈ WX and s ∈ SX arbitrary. By definition, p(s) =
⋃
m∈N Fm

with Fm =
(
¬φ? ⊙ (q ⊙ φ?)m

)
(s). For all m, Fm is either empty or a singleton (IH).

Also, Fm = {s′} if and only if there are s0, s1, . . . , sm ∈ SX where s0 = s and sm = s′

such that, for all j < m, sj ⊨ φ and sj+1 = q(sj) (IH), and sm ⊨ ¬φ. Hence, if
Fm = {s′} then Fℓ = ∅ for all ℓ ̸= m, and we are done.

Example 7. The While program cz defined as if (n%2 = 0) {n:= n ÷ 2} {n:= 3 ∗ n+ 1}
from the running example introduced in Section 1 is deterministic. The While program
(hence, deterministic) Cz def

= while ¬(n = 1) {cz} repeats cz until the value of n becomes
one. Whether Cz terminates on all positive integer inputs is unknown—a problem known as
the Collatz conjecture.

15

5.3. Programs as Traces
Crucial to this work, in this section, a program is represented as a set of traces.

Definition 11 (Program Traces). Let p ∈ QX range over programs. The sets Tp ⊆ TX of
traces through p are inductively defined on the structure of programs as follows:

Tp :=


{t} if p = t ∈ TX

Tq ∪ Tr if p = q + r⋃∞
m=0 Tqm#ε if p = q∗

{t # u | t ∈ Tq, u ∈ Tr} if p = q # r

Here, qm #ε means q sequenced m times followed by a trailing ε, which is just ε when m = 0.
This is equivalent to the least fixed point of the operator λW . {ε} ∪ {u # t | u ∈ Tq, t ∈ W},
where W ⊆ TX and the partial order is that of subset inclusion. Thus, Tq∗ = Tε∪Tq#q∗ . This
equation mirrors Lemma 7. Note that, in general, two programs can have different sets of
traces, even though they may produce the same outputs.

The set Tp of traces of a program p is a correct representation:

Lemma 9 (). For all programs p ∈ QX and every input s ∈ SX , p(s) = {t(s) | t ∈
Tp} \ {⊘}.

Proof. Straightforward induction on the structure of programs.

Example 8. Let cz and Cz be the programs in Example 7. Then Tcz = {t1, t2} where
t1 = ¬(n % 2=0)? # n:= 3 ∗ n+ 1 and t2 = (n % 2=0)? # n:= n ÷ 2. For s with n 7→ 5, p(s) = t1(s)
with t1(s)(n) = 16, and for s with n 7→ 16, p(s) = t2(s) with t2(s)(n) = 8. Traces t ∈ TCz

of Cz are all of the form ¬(n = 1)? # t(1) # ¬(n = 1)? # t(2) # . . . # ¬(n = 1)? # t(m) # (n = 1)? for
some m ≥ 0 where each t(j) ∈ Tcz.

6. Denotational Symbolic Semantics

We have shown how the concrete semantics of a single trace is captured by a symbolic execu-
tion (Lemma 1), and how a program is represented by a set of traces (Lemma 9). Combining
these results, we obtain a natural description of symbolic execution as a technique that tra-
verses all the traces, all the while computing each trace substitution and path condition.
The denotational symbolic semantics of traces is generalized to programs as follows.

Definition 12 (Symbolic Program Semantics). The denotational symbolic semantics of a
program p ∈ QX is the set

Fp = {(Sub(t),PC(t)) | t ∈ Tp}

For example, (id,⊤), ({x/e},⊤), and (id, φ), are the singleton elements of Fε, Fx:= e, and
Fφ?, respectively. We moreover have the following characterizations showcasing the compo-
sitional nature of the symbolic semantics:

16

Lemma 10 (Symbolic Semantics Properties). For all programs p, q ∈ QX :

(i) Sequencing: Fp#q = {(σ ⋆ σ′, φ ∧ σ(φ′)) | (σ, φ) ∈ Fp, (σ
′, φ′) ∈ Fq};

(ii) Choice Fp+q = Fp ∪ Fq;

(iii) Induction: Fp∗ =
⋃
m∈NFpm#ε.

(iv) Unfolding: Fp∗ = Fε ∪ Fp#p∗ ; and

Proof. Items (i) to (iii) are immediate from Definition 11; Item (i) also relies on Definitions 5
and 6. Unfolding follows from the least fixed point characterization Tp∗ = Tε ∪ Tp#p∗ .

The sets Fp and Fp#ε are not syntactically identical, because of an extra conjunct ⊤ originat-
ing from the PC of the trailing ε. We write Fp ≡ Fq if there is a one-to-one correspondence
between Fp and Fq such that (σ, φ) ∈ Fp corresponds to (σ, φ′) ∈ Fq with φ ≡ φ′. Let
(σ, φ) ⊏− Fp denote that there exists φ′ ∈ BX such that (σ, φ′) ∈ Fp and φ ≡ φ′.

Example 9. Consider the deterministic While program Cz with the while loop. The Collatz
conjecture (see Example 7) states that the program terminates for any initial state. We
will express this conjecture using the symbolic semantics. Letting X = {n} and D = N+

(positive integers), the set of states SX = {s : X → D} is isomorphic to N+. Thus, we can
identify states in SX with values in N+ for the unique variable n.

Assume the conjecture is true and let n ∈ N+ be an arbitrary initial state. By the con-
jecture, and using Lemma 9, there is n′ ∈ N+ and t ∈ TCz such that n′ = t(n). Subsequently
applying Lemma 5, we have s ⊨ PC(t), and therefore s ⊨

∨
(σ,φ)∈FCz

φ. Thus, if the Collatz
conjecture holds, then n ⊨

∨
(σ,φ)∈FCz

φ for every initial state n ∈ N+.
Conversely, if there is (σ, φ) ∈ FCz such that n ⊨ φ, then, by Lemma 5, there is n′ ∈ N+

and t ∈ TCz such that t(n) = n′, i.e., Cz terminates on n. Therefore, the Collatz conjecture
is equivalent to the statement that

∨
(σ,φ)∈FCz

φ holds for all initial states n ∈ N+.

The symbolic semantics corresponds to the concrete semantics in the following way:

Theorem 2 (Concrete-Symbolic Correspondence). Let p ∈ QX be a program and s, s′ ∈
SX concrete states.

(i) If s′ ∈ p(s) then there is (σ, φ) ∈ Fp such that s ⊨ φ and JσK(s) = s′.

(ii) If (σ, φ) ∈ Fp and s ⊨ φ then JσK(s) ∈ p(s).

The first part (i) expresses completeness: every concrete, non-aborted computation has a
corresponding symbolic computation. Conversely, the second part (ii) expresses correctness:
every symbolic computation describes the concrete executions for initial states that satisfy
the path condition.

Proof. By Lemma 9, s′ ∈ p(s) iff there is t ∈ Tp such that t(s) = s′. By Lemmas 4 and 5,
this s′ is a non-aborted state if and only if s ⊨ PC(t) and JSub(t)K(s) = s′.

17

asgn
(x:= e, σ, φ) −→ (ε, σ[x 7→ σ(e)], φ)

asm
(φ?, σ, φ) −→ (ε, σ, φ ∧ σ(φ))

seq-0
(ε # p, σ, φ) −→ (p, σ, φ)

ndet-L
(p+ q, σ, φ) −→ (p, σ, φ)

(p, σ, φ) −→ (p′, σ′, φ′)
seq-n

(p # q, σ, φ) −→ (p′ # q, σ′, φ′)
ndet-R

(p+ q, σ, φ) −→ (q, σ, φ)

halt
(p∗, σ, φ) −→ (ε, σ, φ)

unfold
(p∗, σ, φ) −→ (p # p∗, σ, φ)

Figure 2: Symbolic Execution

7. Operational Symbolic Semantics: Symbolic Execution

The denotational symbolic semantics defines the symbolic substitutions and path conditions
for each program trace. Symbolic execution systems are small-step transition systems that
compute these substitutions and path conditions operationally. The rules for a system
implementing symbolic execution for programs p ∈ QX are shown in Figure 2. In this
system, states (p, σ, φ) consist of (i) a program p to be executed; (ii) a symbolic substitution σ
recording trace behavior; and (iii) the trace precondition φ, called the path condition. Recall
that −→∗ denotes the reflexive-transitive closure of −→. A chain (p, σ, φ) −→∗ (p′, σ′, φ′) is
called a symbolic execution.

In the transition system, sequencing is evaluated from left to right, meaning a program
p # q # r is read as p # (q # r). The updated σ[x 7→ σ(e)] in Rule asgn equals the composition
σ ⋆ {x/e}. A pair (σ, φ) is called a configuration.

We write (p, σ, φ) =⇒∗ (p′, σ′, φ′) if there is a path condition φ′′ such that (p, σ, φ) −→∗

(p′, σ′, φ′′) and φ′′ ≡ φ′. Similar to ‘⊏−’, we introduce the notation ‘=⇒∗’ because of possible
syntactic mismatches of conjuncts ⊤ between denotational and operational semantics. For
example, (φ?, id,⊤) −→ (ε, id,⊤ ∧ φ), but we do not have (id,⊤ ∧ φ) ∈ Fφ?. However,
we do have (id,⊤ ∧ φ) ⊏− Fφ?. Conversely, (id, φ) ∈ Fφ? but not (φ?, id,⊤) −→∗ (ε, id, φ).
However, we do have (φ?, id,⊤) =⇒∗ (ε, id, φ).

Analyzing the rules in Figure 2, using the Substitution Lemmas 1 and 3, it can be
shown that, if (p, σ, φ) =⇒∗ (p′, σ′, φ′) −→ (p′′, σ′′, φ′′) then (p, σ, φ) =⇒∗ (p′′, σ′′, φ′′). By
induction, if (p, σ, φ) =⇒∗ (p′, σ′, φ′) −→∗ (p′′, σ′′, φ′′) then (p, σ, φ) =⇒∗ (p′′, σ′′, φ′′).

Theorem 3 (Correctness). If (p, id,⊤) −→∗ (ε, σ, φ) then (σ, φ) ⊏− Fp.

Theorem 4 (Completeness). If (σ, φ) ∈ Fp then (p, id,⊤) =⇒∗ (ε, σ, φ).

The proofs of Theorems 3 and 4 are provided below. The proof of correctness is by induc-
tion on the length of the transition chain. The statement of correctness concerns symbolic
executions that are both terminating (the final state contains the inactive program ε) and
canonical (starting from the initial configuration (id,⊤)). Observe that induction on tran-
sition chains that are both terminating and canonical is a challenging task, since the IH

18

cannot be applied to transition chains of length one step smaller: this will be either non-
canonical (analyzing the first step of the chain) or non-terminating (analyzing the last step).
To make the proof work, we analyze the first step, and the remaining transition chain must
be reconfigured to the canonical symbolic execution. The canonical execution starting from
a program p typifies all symbolic executions from p in the following way:

Proposition 2 (Canonical Symbolic Excecution). For all programs p, q ∈ QX and con-
figurations (σ, φ), (σ′, φ′) ∈ ΣX × BX , if (p, σ, φ) −→∗ (q, σ′, φ′) then there exists (σ1, φ1)
such that (p, id,⊤) −→∗ (q, σ1, φ1), σ′ = σ1 ⋆ σ, and φ′ ≡ φ ∧ σ(φ1).

Proof. By induction on the length of the transition chain, analyzing the last execution
step in the chain. The base case (length zero) is trivial. For the inductive step, we have
(p, σ, φ) −→∗ (q, σ′, φ′) −→ (q′′, σ′′, φ′′). The IH states that there is (p, id,⊤) −→∗ (q, σ1, φ1)
such that σ′ = σ ⋆σ1 and φ′ ≡ φ∧σ(φ1). The goal is to show that (q, σ1, φ1) −→ (q′′, σ2, φ2)
such that σ′′ = σ ⋆ σ2 and φ′′ ≡ φ ∧ σ(φ2).

• If the last transition was justified using Rule asgn then σ′′ = σ′ ⋆ {x/e} and φ′′ = φ′.
We have a matching transition (q, σ1, φ1) −→ (q′′, σ2, φ2) with σ2 = σ1 ⋆ {x/e} and
φ2 = φ1. By IH, σ′′ = (σ ⋆ σ1) ⋆ {x/e} = σ ⋆ σ2, and clearly φ′′ ≡ φ ∧ σ(φ2).

• If the last transition was justified using Rule asm then σ′′ = σ′ and φ′′ = φ′ ∧ σ′(φ)
for some φ ∈ BX . Clearly, σ′′ = σ′ = σ ⋆ σ1 = σ ⋆ σ2. Moreover, φ′′ ≡ φ′ ∧ σ′(φ) ≡
(φ ∧ σ(φ1)) ∧ (σ ⋆ σ1)(φ) ≡ φ ∧ σ(φ1 ∧ σ1(φ)) ≡ φ ∧ σ(φ2).

• For any other rule justifying the last transition, except for Rule seq-n, the configuration
remains unchanged. That is, (σ′′, φ′′) = (σ′, φ′) and also (q, σ1, φ1) −→ (q′′, σ2, φ2) such
that (σ2, φ2) = (σ1, φ1). In these cases, the result is immediate from IH.

• For Rule seq-n let (q # r, σ′, φ′) −→ (q′′ # r, σ′′, φ′′) for some trailing program r be the
last transition, justified by (q, σ′, φ′) −→ (q′′, σ′′, φ′′). Similarly, (q # r, σ1, φ1) −→
(q′′ # r, σ2, φ2) must be justified by (q, σ1, φ1) −→ (q′′, σ2, φ2). Since sequencing is per-
formed from left to right, the transitions (q, σ′, φ′) −→ (q′′, σ′′, φ′′) and (q, σ1, φ1) −→
(q′′, σ2, φ2) are not justified by Rule seq-n. Hence, a subsequent analysis of the other
rules, as in the previous three cases, shows that σ′′ = σ ⋆ σ2 and φ′′ = φ ∧ σ(φ2).

Induction on the transition chain length is finished, and the result is established.

Towards a full correctness proof, we show how each single step in the transition system is
consistent with the denotational semantics:

Lemma 11 (Canonical One-Step Correctness). For all programs p ∈ QX , if (p, id,⊤) −→
(q, σ, φ) and (σ′, φ′) ∈ Fq, then (σ ⋆ σ′, φ ∧ σ(φ′)) ⊏− Fp.

By induction on the length of the chain, this extends to symbolic executions in general:

Corollary 1 (Canonical Correctness). For all programs p, q ∈ QX , if (p, id,⊤)−→∗ (q, σ, φ)
and (σ′, φ′) ∈ Fq, then (σ ⋆ σ′, φ ∧ σ(φ′)) ⊏− Fp.

19

Proof (of Lemma 11). We proceed by induction on the structure of programs p, analyzing
all possible transitions. Inaction ε has no outgoing transitions and the two other base cases
(assignment x:= e and assertion φ?) are mechanically verified.

• For sequencing with Rule seq-0, we have (ε # q, id,⊤) −→ (q, id,⊤). Observe that
(id⋆σ′,⊤∧ id(φ′)) ≡ (σ′, φ′) for all (σ′, φ′) ∈ Fq and that Fq ≡ Fε#q, so (σ′, φ′) ⊏− Fε#q.

• Assume (p # r, id,⊤) −→ (q # r, σ, φ) is justified using Rule seq-n by (p, id,⊤) −→
(q, σ, φ), and let (σ′, φ′) ∈ Fq#r. By Lemma 10(i), σ′ = σ1 ⋆σ2 and φ′ = φ1∧σ1(φ2) for
some (σ1, φ1) ∈ Fq and (σ2, φ2) ∈ Fr. By IH (p), (σ ⋆σ1, φ∧σ(φ1)) ⊏− Fp. Then, again
using Lemma 10(i), it follows that ([σ ⋆ σ1] ⋆ σ2, [φ∧ σ(φ1)]∧ (σ ⋆ σ1)(φ2)) ⊏− Fp#r, and
this is equivalent to (σ ⋆ σ′, φ∧ σ(φ′)), so we are done. This is the only case using IH.

• For p+q, apply Rule ndet-L or Rule ndet-R; the result is immediate from Lemma 10(ii).

• For p∗ and analyzing Rules halt and unfold, the result follows from Lemma 10(iv).

Induction for the proof of Lemma 11 is now finished.
The proof of Corollary 1 is by induction on the length of the transition chain, analyzing

the first transition in the chain. For (p, id,⊤) −→ (q, σ1, φ1) −→∗ (p′, σ′, φ′), the IH cannot
be applied directly to (q, σ1, φ1) −→∗ (p′, σ′, φ′), because it does not start from the initial
configuration (id,⊤). Instead, the inductive step is finished by reconfiguring the chain with
Proposition 2, applying IH, and using Lemma 11 to prepone (p, id,⊤) −→ (q, σ1, φ1).

In the proof of Lemma 11, IH is used only for sequencing. This reveals how traces (i.e.,
sequences) are at the heart of operational semantics. Choice and iteration, operationally
speaking, merely perform internal reprogramming, picking a trace to continue with.

Proof (of Theorems 3 and 4). Correctness is a special case of Corollary 1, taking q = ε.
The proof of completeness proceeds by induction on the structure of programs. The base
cases are mechanically verified, e.g., Fp for p = x:= e we have (σ, φ) = ({x/e},⊤) and
(x:= e, id,⊤) −→∗ (ε,{x/e},⊤). The case for nondeterministic choice is immediate from
the IHs, since the transition (p + q, σ, φ) −→ (p, σ, φ) does not change the configuration.
Two cases remain:

• For (σ, φ) ∈ Fp#q we know that (σ, φ) = (σ1⋆σ2, φ1∧σ1(φ2)) for some (σ1, φ1) ∈ Fp and
(σ2, φ2) ∈ Fq. Apply IH (p) to get (p, id,⊤) =⇒∗ (ε, σ1, φ1). Sequence the whole chain
with q to get (p # q, id,⊤) =⇒∗ (ε # q, σ1, φ1) and transition to (q, σ1, φ1). Next, apply
IH (q) to get (q, id,⊤) =⇒∗ (ε, σ2, φ2). Reconfigure with Proposition 2 to the symbolic
execution (q, σ1, φ1) =⇒∗ (ε, σ′, φ′) such that σ′ = σ1 ⋆ σ2 and φ′ ≡ φ1 ∧ σ1(φ2).
Observe that (σ, φ) ≡ (σ′, φ′), so we are done.

• For (σ, φ) ∈ Fp∗ =
⋃
m∈N Fpm#ε we prove by induction on the number of iterations m

that, for all m: for all (σ, φ) ∈ Fpm#ε we have (p∗, id,⊤) =⇒∗ (ε, σ, φ). The base case,
m = 0 is immediate, since Fε = {(id,⊤)} and (p∗, id,⊤) −→ (ε, id,⊤) by Rule halt. If
m > 0, observe that (σ, φ) ∈ Fp#pm−1#ε so that σ = σ1 ⋆σ

′ and φ = φ1∧σ1(φ′) for some
20

(σ1, φ1) ∈ Fp and (σ′, φ′) ∈ Fpm−1#ε. Apply IH (p) to get (p, id,⊤) =⇒∗ (ε, σ1, φ1) and
IH (m−1) to get (p∗, id,⊤) =⇒∗ (ε, σ′, φ′). Using Rule unfold and the same sequencing
and reconfiguring technique as in the previous item, we obtain (p∗, id,⊤) =⇒∗ (ε, σ, φ).

The proof of completeness is thus concluded.

We conclude this section by operationally characterizing if and while statements.

Proposition 3 (If and While Statements). For all programs p, q, Boolean expressions φ,
and symbolic configurations (σ, φ), the following transition chains are always provable:

(i) (if φ p q, σ, φ) −→∗ (p, σ, φ ∧ σ(φ));

(ii) (if φ p q, σ, φ) −→∗ (q, σ, φ ∧ σ(¬φ));

(iii) (while φ p, σ, φ) −→∗ (p # while φ p, σ, φ ∧ σ(φ)); and

(iv) (while φ p, σ, φ) −→∗ (ε, σ, φ ∧ σ(¬φ)).

Proof. For Item (i) the first transition is (if φ p q, σ, φ) −→ (φ? # p, σ, φ), justified by
Rule ndet-L. The Rules asm and seq-n prove that (φ? # p, σ, φ) −→ (ε # p, σ, φ ∧ σ(φ)), and
this transitions to (p, σ, φ∧σ(φ)) by Rule seq-0. Item (ii) is proved in the same way but with
Rule ndet-R. Item (iii) is proved by sequencing Rule unfold, yielding φ? # p # (φ? # p)∗, with
Rule asm. Item (iv) is proved with Rule halt and then sequencing with a ¬φ-assumption.

8. Weakest Preconditions

In this section we generalize the propositional dynamic logic of Section 4 from traces to
programs. The syntax is identical; except that the modalities now contain programs rather
than traces.

Definition 13 (PDL for Programs). The syntax of PDL is given by:

B̂1 ∋ φ ::= r(e1, . . . , en) | ⊥ | φ→ φ | [p]φ

where r ranges over predicate operators in Π, each ei over expressions in EX , and p ranges
over programs in QX .

The semantics m of predicates, false, and conditionals is as defined in Section 2. The
semantics

m([p]φ)
def
= {s | ∀s′ ∈ p(s) : s′ ∈ m(φ)}

supersedes the semantics of trace modalities: if p happens to be a trace then the trace box
modality and program box modality coincide. By definition, [p]φ is the weakest liberal
precondition of p with respect to φ. We retain all previous encodings for negation, true,
disjunction, conjunction and again add ⟨p⟩φ encoded as the dual ¬[p]¬φ of the box modality.
The diamond modality’s derived semantics is

m(⟨p⟩φ) = {s | ∃s′ ∈ p(s) : s′ ∈ m(φ)}
21

If p happens to be a trace then the trace diamond modality and program diamond modality
coincide. For deterministic programs p, and in particular While programs, the formula ⟨p⟩ψ
expresses the weakest precondition of p with respect to ψ.

Theorem 5 (Weakest Liberal Precondition). For all programs p ∈ QX and modality-free
formulas ψ ∈ BX :

[p]ψ ≡
∧

(σ,φ)∈Fp

φ→ σ(ψ)

Proof. Let s ⊨ [p]ψ and (σ, φ) ∈ Fp. If s ⊨ ¬φ then s ⊨ φ → σ(ψ). If s ⊨ φ then
JσK(s) ∈ p(s) by Theorem 2, and hence, JσK(s) ⊨ ψ because s ⊨ [p]ψ; equivalently, using
Lemma 1, s ⊨ σ(ψ); hence s ⊨ φ → σ(ψ). We have shown [p]ψ ⇒ (φ → σ(ψ)) and since
(σ, φ) was arbitrary, [p]ψ ⇒

∧
(σ,φ∈Fp)

φ→ σ(ψ). The converse is proved similarly.

Using De Morgan laws for box and diamond modalities and for disjunction and conjunction,
the following result is immediate:

Theorem 6 (). For all programs p ∈ QX and modality-free formulas ψ ∈ BX :

⟨p⟩ψ ≡
∨

(σ,φ)∈Fp

σ(ψ) ∧ φ

In these results, we have extended PDL with arbitrary conjunction and disjunction: finitary
or countable-infinitary, depending on the size of Fp.

A disjunction of σ(ψ)∧φ for the (σ, φ) from a finite subset of Fp will still give a precon-
dition guaranteeing the postcondition for ψ, but it may not be the weakest.

Corollary 2 (Arbitrary Preconditions). For any subset W ⊆ Fp of symbolic executions,(∨
(σ,φ)∈W σ(ψ) ∧ φ

)
⇒ ⟨p⟩ψ.

This does not hold for the weakest liberal precondition, seeing as we are taking a conjunction
there, and the formula may be too weak.

For deterministic programs, and While programs p ∈ WX in particular, for which the
weakest precondition is given by the diamond modality, Theorem 6 expresses the weakest
precondition in terms of the symbolic executions.

9. Related Work

In this section we discuss related interesting research developments regarding semantics of
symbolic execution.

In an earlier formal description of symbolic execution [5], De Boer and Bonsangue proved
correctness and completeness of symbolic execution with respect to an operational-style se-
mantics modeling concrete execution. In contrast, we relate concrete and symbolic deno-
tational semantics (Theorem 2), by semanticizing the symbolic substitutions as concrete
state transformers. This semantics is very natural, since substitutions are syntactic objects
describing a transformation for each variable. Nevertheless, making this semantics precise

22

is crucial in relating forward state transformation — using the semantics of the substitution
— to backward predicate transformation — by applying the substitution syntactically.

De Boer and Bonsangue [5] also view symbolic execution as extracting traces from pro-
grams. They extract traces in an operational semantics, whereas we take a denotational
approach and define them inductively, directly on the program. In our context, correctness
(Theorem 3) of symbolic execution states that the operational semantics computes exactly
the elements of the denotational semantics Fp; completeness (Theorem 4) that all trace
representations (σ, φ) ∈ Fp will eventually be reached in the operational semantics. In con-
trast to De Boer and Bonsangue [5], both results stay within the symbolic realm, and no
concrete semantics is necessary. The proofs of correctness and completeness cannot be done
using syntactic equality: the conjuncts appearing in the corresponding path conditions are
different, but equivalent.

Lucanu et al. develop a language-independent coinductive description of symbolic execu-
tion [2, 27], based on term rewriting [4], which can be extended into a deductive verification
system for Reachability Logic [35]. The authors prove correctness properties (called cover-
age and precision, which are similar to De Boer and Bonsangue’s notions of correctness and
completeness discussed above) for their symbolic semantics with respect to a concrete se-
mantics. They use derivatives of formulas in matching logic and reachability logic to express
semantics as rewrite rules, and show how this approach can be used for tool-based reasoning
about programs in the K framework [33]. In contrast to this term rewriting approach based
on forward reasoning, our work is concerned with a compositional, trace-based denotational
semantics and we show how symbolic execution can also be used for weakest precondition
(backwards) reasoning. Lucanu et al. [2, 27] further consider a construction from concrete
to symbolic semantics in terms of transformation steps on the rules: linearization, term
abstraction into symbolic variables and explicitation of path conditions. Recent work by the
authors [39] propose a rule format to automatically generate both concrete and symbolic
semantics with built-in correctness properties in terms of a syncrete bisimulation relation.
This line of research on constructing symbolic semantics complements the work in our paper.

Kneuper [26] gives a denotational semantics of symbolic execution based on sets of se-
quences of symbolic states and a function extending these sequences. Steinhöfel [37, Ch. 3]
describes a more general approach based on concretization of symbolic states. A similar ap-
proach is taken by Porncharoenwase et al. [32], who describe symbolic execution of a Scheme
dialect through big-step semantics. These approaches operationalize the exploration of sym-
bolic states. In the case of Kneuper as sets of traces that are incrementally extended, and in
the case of Steinhöfel as changing sets of reached states. On the other hand, the present work
defines operational symbolic semantics by implicitly constructing a tree of symbolic states
and relating this tree to the (non-branching) concrete semantics, leaving the exploration of
the tree unspecified.

Several works exist at the intersection of symbolic execution and Coq mechanizations.
Correnson and Steinhöfel [11] build on De Boer and Bonsangue’s small-step semantics to
produce a verified symbolic bug finder. Kløvstad et al. [25] mechanized proofs of composi-
tional correctness and completeness for symbolic execution of parallel programs, but not in
a denotational setting.

23

Owens et al. [31] mechanize what they call a functional big-step semantics for a toy
language called FOR, which is similar to ours, but uses for loops instead of while loops,
and models assignments as side-effects of expressions. Their functional big-step semantics
is essentially identical to our concrete semantics, but we moreover take a perspective on the
semantics from a symbolic point of view. Implementing symbolic execution for the FOR
language and reason about weakest preconditions should be straightforward.

Nakata and Uustalu [30] explored four different trace-based coinductive operational se-
mantics for the While language: big-step and small-step, functional and relational—all of
them only for concrete execution, while we include symbolic. Similar to our work, the se-
mantics of Nakata and Uustalu are concerned with sequential composition. It is challenging
to define denotational semantics for parallel composition operators; concurrency leads to
interference, which is difficult to capture compositionally. Recent work by Din et al. [14]
combine a locally symbolic big-step semantics with a globally concrete medium-step se-
mantics to obtain a denotational trace semantics for concurrent languages. In their work,
the granularity of the denotational, symbolic semantics correspond to the atomic regions
of the parallel operator, so parallel composition in fact lazily unfolds and stitches together
denotational fragments. Whereas their approach is partly symbolic, the resulting global
trace semantics is in fact concrete. Compared to this line of work, the present work can
be seen as a functional big-step semantics for symbolic execution, following the terminology
of Nakata, Owens and co-authors [30, 31]. We deemed “denotational” more appropriate, as
the purpose of our work is to elucidate the denotation of the syntactic objects generated
in symbolic execution, and to enable compositional reasoning; this has historically been the
use of denotational semantics.

The KeY project [1] is a semi-automatic deductive verification tool for Java that em-
ploys forward reasoning with symbolic execution for debugging and verification condition
generation. KeY’s logical framework is based on a dynamic logic for Java with updates.
Related combinations of symbolic execution and dynamic logic have also recently been de-
veloped for, e.g., smart contracts [3, 34] and probabilistic programs [24]. Like our traces,
these updates represent finite, deterministic and side effect-free program fragments, which
are computed symbolically and applied to formulas. While this line of work is focused on
using symbolic execution to compute strongest postconditions, our paper further justifies the
use of symbolic execution to compute preconditions by semanticizing symbolic substitutions
as state transformers. Gordon and Collavizza [16] discuss the merits of strongest postcon-
dition with forward reasoning compared to weakest precondition with backward reasoning;
the authors claim that computing weakest preconditions is simpler, but that strongest post-
condition reasoning benefits from being formulated with symbolic execution. Our work
shows that weakest precondition reasoning may in fact also benefit from symbolic execution
frameworks.

Hoare and Jifeng’s Unifying Theories of Programming (UTP) [20] also seek to unify oper-
ational, denotational and axiomatic semantics, but in a concrete setting. In their framework
programs represent relations between concrete states, rather than state transformers. Other
work in the UTP project are more closely related to ours. In particular Jifeng [19] develops
both denotational and operational semantics from an algebra of programs and shows how

24

to derive a predicate transformer semantics and weakest preconditions. Jifeng’s approach
has recently been mechanized by Mu and Li [29]. However, none of these works define a
denotational semantics for symbolic execution.

10. Conclusions and Future Work

We have defined a symbolic denotational semantics as a set of symbolic substitutions along
with their respective preconditions; one such pair for every trace of a program. The de-
notational semantics enabled compositional reasoning, as demonstrated in Lemma 10. An
interesting aspect of our work is that this compositionality is not obvious. Indeed, for
the substitutions, the semantic composition is the reverse of the syntactic composition,
and composition of path conditions uses substitution. We exploit the symbolic execution
compositionality results to formally show how symbolic execution computes (weakest) pre-
conditions.

We have mechanized our results in the theorem prover Coq.
We have disallowed program modalities in postconditions and Boolean tests in the

program—this is the poor -test version of PDL as opposed to the rich-test version—since
it would invalidate Rule asm in the symbolic operational semantics of Section 7. Indeed,
it is unclear what the effect of a symbolic substitution on a formula including a program
modality would have to be. Moreover, the resulting symbolic execution would leave us with
a program modality in the precondition, and the whole point is to get rid of those. It may
be theoretically interesting to explore techniques of symbolically executing modalities in
rich-test PDL, but the practical implications are very limited.

The denotational semantics extends easily to more language constructs. For example,
other work [40] illustrates the use of a denotational semantics for proof techniques involving
probabilistic language constructs such as sampling and observe statements. Denotational
semantics for such language constructs are straightforward extensions of the semantics pre-
sented here.

A highly interesting extension of the work in this paper is to incorporate parallelization;
compositional correctness and completeness of a small-step symbolic semantics for parallel
programs has recently been mechanized [25]. In a denotational setting, parallelization can be
addressed by means of trace semantics and corresponding coinductive techniques (e.g., [38]);
furthermore, concurrency is very context-sensitive, which makes assigning a denotational
(or functional big-step) semantics challenging. In the future we plan to study a trace-
based denotational semantics of symbolic execution, allowing parallelization as well as non-
termination.

References

[1] Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (Eds.), 2016. Deductive
Software Verification - The KeY Book - From Theory to Practice. volume 10001 of Lecture Notes in
Computer Science. Springer. URL: https://doi.org/10.1007/978-3-319-49812-6, doi:10.1007/
978-3-319-49812-6.

25

https://doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6

[2] Arusoaie, A., Lucanu, D., Rusu, V., 2013. A generic framework for symbolic execution, in: Erwig, M.,
Paige, R.F., Wyk, E.V. (Eds.), Proc. 6th International Conference on Software Language Engineering
(SLE 2013), Springer. pp. 281–301. doi:10.1007/978-3-319-02654-1_16.

[3] Arvay, B., Doan, T.T.H., Thiemann, P., 2024. A dynamic logic for symbolic execution for the smart
contract programming language michelson, in: Aldrich, J., Salvaneschi, G. (Eds.), Proc. 38th European
Conference on Object-Oriented Programming(ECOOP 2024), Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. pp. 3:1–3:26. doi:10.4230/LIPICS.ECOOP.2024.3.

[4] Baader, F., Nipkow, T., 1998. Term rewriting and all that. Cambridge University Press.
[5] de Boer, F.S., Bonsangue, M.M., 2021. Symbolic execution formally explained. Formal Aspects of

Computing 33, 617–636. doi:10.1007/S00165-020-00527-Y.
[6] Cadar, C., Dunbar, D., Engler, D.R., 2008. KLEE: unassisted and automatic generation of high-

coverage tests for complex systems programs, in: Draves, R., van Renesse, R. (Eds.), Proc. 8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’08), USENIX Association. pp.
209–224.

[7] Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R., 2006. EXE: automatically generating
inputs of death, in: Juels, A., Wright, R.N., di Vimercati, S.D.C. (Eds.), Proc. 13th ACM Conference
on Computer and Communications Security (CCS’06), ACM. pp. 322–335. doi:10.1145/1180405.
1180445.

[8] Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C.S., Sen, K., Tillmann, N., Visser, W., 2011.
Symbolic execution for software testing in practice: preliminary assessment, in: Taylor, R.N., Gall,
H.C., Medvidovic, N. (Eds.), Proc. 33rd International Conference on Software Engineering (ICSE 2011),
ACM. pp. 1066–1071. doi:10.1145/1985793.1985995.

[9] Cadar, C., Sen, K., 2013. Symbolic execution for software testing: three decades later. Commun. ACM
56, 82–90. doi:10.1145/2408776.2408795.

[10] Coq Development Team, 2022. The Coq proof assistant. doi:10.5281/zenodo.7313584.
[11] Correnson, A., Steinhöfel, D., 2023. Engineering a formally verified automated bug finder, in: Chandra,

S., Blincoe, K., Tonella, P. (Eds.), Proceedings of the 31st ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3-9, 2023, ACM. pp. 1165–1176. doi:10.1145/3611643.3616290.

[12] Cousot, P., Cousot, R., 1992. Abstract Interpretation Frameworks. Journal of Logic and Computation
2, 511–547. doi:10.1093/logcom/2.4.511.

[13] Dijkstra, E.W., 1997. A Discipline of Programming. 1st ed., Prentice Hall PTR, USA.
[14] Din, C.C., Hähnle, R., Henrio, L., Johnsen, E.B., Pun, V.K.I., Tapia Tarifa, S.L., 2024. Locally

abstract, globally concrete semantics of concurrent programming languages. ACM Trans. Program.
Lang. Syst. 46, 3:1–3:58. doi:10.1145/3648439.

[15] Godefroid, P., Klarlund, N., Sen, K., 2005. DART: directed automated random testing, in: Sarkar,
V., Hall, M.W. (Eds.), Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’05), ACM. pp. 213–223. doi:10.1145/1065010.1065036.

[16] Gordon, M., Collavizza, H., 2010. Forward with Hoare, in: Roscoe, A.W., Jones, C.B., Wood,
K.R. (Eds.), Reflections on the Work of C. A. R. Hoare. Springer, pp. 101–121. doi:10.1007/
978-1-84882-912-1_5.

[17] de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R., 2015. OpenJDK’s Java.utils.collection.sort()
is broken: The good, the bad and the worst case, in: Kroening, D., Pasareanu, C.S. (Eds.), Proc.
27th International Conference on Computer Aided Verification (CAV 2015), Springer. pp. 273–289.
doi:10.1007/978-3-319-21690-4_16.

[18] Harel, D., Tiuryn, J., Kozen, D., 2000. Dynamic Logic. MIT Press, Cambridge, MA, USA.
[19] He, J., 2016. A new roadmap for linking theories of programming, in: Bowen, J.P., Zhu, H. (Eds.),

Unifying Theories of Programming - 6th International Symposium, UTP 2016, Reykjavik, Iceland, June
4-5, 2016, Revised Selected Papers, Springer. pp. 26–43. doi:10.1007/978-3-319-52228-9_2.

[20] He, J., Hoare, C.A.R., 1998. Unifying theories of programming, in: Orlowska, E., Szalas, A. (Eds.),
Participants Copies for Relational Methods in Logic, Algebra and Computer Science, 4th International

26

http://dx.doi.org/10.1007/978-3-319-02654-1_16
http://dx.doi.org/10.4230/LIPICS.ECOOP.2024.3
http://dx.doi.org/10.1007/S00165-020-00527-Y
http://dx.doi.org/10.1145/1180405.1180445
http://dx.doi.org/10.1145/1180405.1180445
http://dx.doi.org/10.1145/1985793.1985995
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.5281/zenodo.7313584
http://dx.doi.org/10.1145/3611643.3616290
http://dx.doi.org/10.1093/logcom/2.4.511
http://dx.doi.org/10.1145/3648439
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1007/978-1-84882-912-1_5
http://dx.doi.org/10.1007/978-1-84882-912-1_5
http://dx.doi.org/10.1007/978-3-319-21690-4_16
http://dx.doi.org/10.1007/978-3-319-52228-9_2

Seminar RelMiCS, Warsaw, Poland, Septermber 14-20, 1998, pp. 97–99.
[21] Hentschel, M., Bubel, R., Hähnle, R., 2019. The symbolic execution debugger (SED): a platform for

interactive symbolic execution, debugging, verification and more. Int. J. Softw. Tools Technol. Transf.
21, 485–513. doi:10.1007/S10009-018-0490-9.

[22] Hoare, C.A.R., 1969. An axiomatic basis for computer programming. Commun. ACM 12, 576–580.
doi:10.1145/363235.363259.

[23] Jacobs, B., Rutten, J., 1997. A tutorial on (co) algebras and (co) induction. Bulletin-European
Association for Theoretical Computer Science 62, 222–259.

[24] Johnsen, E.B., Kamburjan, E., Pardo, R., Voogd, E., Wasowski, A., 2024. Towards a proof system
for probabilistic dynamic logic, in: Jansen, N., Junges, S., Kaminski, B.L., Matheja, C., Noll, T.,
Quatmann, T., Stoelinga, M., Volk, M. (Eds.), Principles of Verification: Cycling the Probabilistic
Landscape - Essays Dedicated to Joost-Pieter Katoen on the Occasion of His 60th Birthday, Part I,
Springer. pp. 322–338. doi:10.1007/978-3-031-75783-9_13.

[25] Kløvstad, Å.A.A., Kamburjan, E., Johnsen, E.B., 2023. Compositional correctness and completeness for
symbolic partial order reduction, in: Pérez, G.A., Raskin, J. (Eds.), Proc. 34th International Conference
on Concurrency Theory (CONCUR 2023), Schloss Dagstuhl - Leibniz-Zentrum für Informatik. pp. 9:1–
9:16. doi:10.4230/LIPICS.CONCUR.2023.9.

[26] Kneuper, R., 1991. Symbolic execution: a semantic approach. Science of computer programming 16,
207–249. doi:10.1016/0167-6423(91)90008-L.

[27] Lucanu, D., Rusu, V., Arusoaie, A., 2017. A generic framework for symbolic execution: A coinductive
approach. Journal of Symbolic Computation 80, 125–163. doi:10.1016/J.JSC.2016.07.012.

[28] Mac Lane, S., 2013. Categories for the working mathematician. volume 5. Springer.
[29] Mu, R., Li, Q., 2023. A Coq implementation of the program algebra in Jifeng He’s new roadmap for

linking theories of programming, in: Bowen, J.P., Li, Q., Xu, Q. (Eds.), Theories of Programming and
Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 80th Birthday, Springer. pp.
395–412. doi:10.1007/978-3-031-40436-8_15.

[30] Nakata, K., Uustalu, T., 2009. Trace-based coinductive operational semantics for While: big-step
and small-step, relational and functional styles, in: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(Eds.), Proc. 22nd International Conference on Theorem Proving in Higher Order Logics (TPHOLs
2009), Springer. pp. 375–390. doi:10.1007/978-3-642-03359-9_26.

[31] Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K., 2016. Functional big-step semantics, in: Thiemann,
P. (Ed.), Proc. 25th European Symposium on Programming (ESOP 2016), Springer. pp. 589–615.
doi:10.1007/978-3-662-49498-1_23.

[32] Porncharoenwase, S., Nelson, L., Wang, X., Torlak, E., 2022. A formal foundation for symbolic evalu-
ation with merging. Proc. ACM Program. Lang. 6. doi:10.1145/3498709.

[33] Rosu, G., 2017. K: A semantic framework for programming languages and formal analysis tools,
in: Pretschner, A., Peled, D., Hutzelmann, T. (Eds.), Dependable Software Systems Engineering.
IOS Press. volume 50 of NATO Science for Peace and Security Series, pp. 186–206. doi:10.3233/
978-1-61499-810-5-186.

[34] Schiffl, J., Ahrendt, W., Beckert, B., Bubel, R., 2020. Formal analysis of smart contracts: Applying
the KeY system, in: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (Eds.), Deductive
Software Verification: Future Perspectives - Reflections on the Occasion of 20 Years of KeY. Springer.
volume 12345 of Lecture Notes in Computer Science, pp. 204–218. doi:10.1007/978-3-030-64354-6\
_8.

[35] Stefanescu, A., Ciobâcua, Ş., Mereuta, R., Moore, B.M., Serbanuta, T., Rosu, G., 2014. All-path
reachability logic, in: Dowek, G. (Ed.), Proc. Joint International Conference on Rewriting and Typed
Lambda Calculi (RTA-TLCA 2014), Springer. pp. 425–440. doi:10.1007/978-3-319-08918-8_29.

[36] Stefanescu, A., Ciobâcua, Ş., Mereuta, R., Moore, B.M., Serbanuta, T., Rosu, G., 2019. All-path
reachability logic. Log. Methods Comput. Sci. 15. doi:10.23638/LMCS-15(2:5)2019.

[37] Steinhöfel, D., 2020. Abstract execution: automatically proving infinitely many programs. Ph.D. thesis.
Technische Universität Darmstadt. URL: http://tuprints.ulb.tu-darmstadt.de/8540/.

27

http://dx.doi.org/10.1007/S10009-018-0490-9
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-031-75783-9_13
http://dx.doi.org/10.4230/LIPICS.CONCUR.2023.9
http://dx.doi.org/10.1016/0167-6423(91)90008-L
http://dx.doi.org/10.1016/J.JSC.2016.07.012
http://dx.doi.org/10.1007/978-3-031-40436-8_15
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.1007/978-3-662-49498-1_23
http://dx.doi.org/10.1145/3498709
http://dx.doi.org/10.3233/978-1-61499-810-5-186
http://dx.doi.org/10.3233/978-1-61499-810-5-186
http://dx.doi.org/10.1007/978-3-030-64354-6_8
http://dx.doi.org/10.1007/978-3-030-64354-6_8
http://dx.doi.org/10.1007/978-3-319-08918-8_29
http://dx.doi.org/10.23638/LMCS-15(2:5)2019
http://tuprints.ulb.tu-darmstadt.de/8540/

[38] Uustalu, T., 2013. Coinductive big-step semantics for concurrency, in: Yoshida, N., Vander-
bauwhede, W. (Eds.), Proc. 6th Workshop on Programming Language Approaches to Concurrency
and Communication-cEntric Software (PLACES 2013), pp. 63–78. doi:10.4204/EPTCS.137.6.

[39] Voogd, E., Johnsen, E.B., Kløvstad, Å.A.A., Rot, J., Silva, A., 2024. Correct and complete symbolic ex-
ecution for free, in: Kosmatov, N., Kovács, L. (Eds.), Proc. 19th International Conference on Integrated
Formal Methods (IFM 2024), Springer. pp. 237–255. doi:10.1007/978-3-031-76554-4_13.

[40] Voogd, E., Johnsen, E.B., Silva, A., Susag, Z.J., Wąsowski, A., 2023a. Symbolic semantics for proba-
bilistic programs, in: Jansen, N., Tribastone, M. (Eds.), Proc. 20th International Conference on Quanti-
tative Evaluation of Systems (QEST 2023), Springer. pp. 329–345. doi:10.1007/978-3-031-43835-6\
_23.

[41] Voogd, E., Kløvstad, Å.A.A., Johnsen, E.B., 2023b. Denotational semantics for symbolic execution, in:
Ábrahám, E., Dubslaff, C., Tapia Tarifa, S.L. (Eds.), Proc. 20th International Colloquium on Theoret-
ical Aspects of Computing (ICTAC 2023), Springer. pp. 370–387. doi:10.1007/978-3-031-47963-2\
_22.

28

http://dx.doi.org/10.4204/EPTCS.137.6
http://dx.doi.org/10.1007/978-3-031-76554-4_13
http://dx.doi.org/10.1007/978-3-031-43835-6_23
http://dx.doi.org/10.1007/978-3-031-43835-6_23
http://dx.doi.org/10.1007/978-3-031-47963-2_22
http://dx.doi.org/10.1007/978-3-031-47963-2_22

	Introduction
	Preliminaries
	Traces
	Symbolic Substitutions
	Symbolic Trace Semantics
	Path Conditions

	Weakest Preconditions of Traces
	Programs
	Programs
	The While Language
	Programs as Traces

	Denotational Symbolic Semantics
	Operational Symbolic Semantics: Symbolic Execution
	Weakest Preconditions
	Related Work
	Conclusions and Future Work

